GANs consist of three terms Generative Adversarial Network. Let's understand these three terms first. Generative : A Generative Model takes input training sample from some distribution and learns to represents that distribution. Adversarial : It basically means Conflicting or Opposing. Networks : These are basically neural networks. So,Generative Adversarial Networks are deep neural network architecture comprising of two neural networks compete with each other to make a generative model. A GAN consist of two class models : Discriminative Model :- It is the one that discriminate between two different classes of data.It tries to identify real data from fakes created by the generator Generative Model :- The Generator turns noise into an imitation of the data to try to trick the discriminator Mathematically, A Generative Model 'G' to be trained on training data 'X' sampled from some true distribution 'D' is the one which, given some standard random distrib...
Machine Learning It is basically a Subset of AI (Artificial Intelligence) which enables Machine to Learn from Data. Hmm... So, What is AI and what does a Subset of AI means? Artificial Intelligence is basically the domain of producing Intelligent Machines. All the machine which performs some smart activity can be called as an Artificially Intelligent Machine like an Air Conditioner changing the Temperature inside the room by sensing the Temperature from the outside. Such machines are not using any Machine Learning or Deep Learning Techniques.So such machine might come in the Artificial Intelligent set but not in the Machine Learning or Deep Learning part. How does a Machine Learns from Data? A Machine Learns from data using a Machine Learning Algorithm which take's the data as an input and predicts the output by finding patterns in the data. Machine Learning Algorithms can be broadly divided into 3 types : Supervised Learning Unsupervised Learning Rein...